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Abstract: The simplicity and computational efficiency of back-projection formulae have
made them a popular choice in optoacoustic tomography. Nonetheless, exact back-projection
formulae exist for only a small set of tomographic problems. This limitation is overcome by
algebraic algorithms, but at the cost of higher numerical complexity. In this paper, we present
a generic algebraic framework for calculating back-projection operators in optoacoustic
tomography. We demonstrate our approach in a two-dimensional optoacoustic-tomography
example and show that once the algebraic back-projection operator has been found, it
achieves a comparable run time to that of the conventional back-projection algorithm, but
with the superior image quality of algebraic methods.
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1. Introduction

Tomographic inversion problems, which pertain to the determination of 2D or 3D objects
from their projections, are common in many imaging fields [1-8]. Most often, the projection
data may be described by the Radon transform, or a modification thereof. While the Radon
transform is most commonly known in the context of X-ray computerized tomography (X-ray
CT) [1-3] it also appears in single-photon emission computed tomography (SPECT) [4],
positron emission tomography (PET) [8], optical projection tomography (OPT) [5], and
ultrasound tomography (UT) [6]. In the field of optoacoustic tomography (OAT), often
referred to as photoacoustic tomography (PAT) [7], as well as in other forms of
thermoacoustic tomography (TAT) [9], a variation of the Radon transform is used in which
the projections are taken not over lines, but rather over arcs or spherical shells [10].

In OAT, most inversion algorithms fall under one of the following categories [10]:
analytical and optimization-based. In analytical algorithms, it is assumed that the projection
data are represented by a continuous function and the solution is written as a set of analytical
operations that are applied on that function. Known examples of that approach are back-
projection (BP) algorithms [11-15] and Fourier-based methods [16,17]. While analytical
algorithms are often exact, approximate formulae are also very valuable when they are simple
to compute [11]. Approximate BP formulaec may also be used to improve the reconstruction
quality in non-ideal imaging scenarios, as demonstrated in [18-20]. Since all analytical
algorithms are eventually discretized and applied on non-ideal data, small errors in the
analytical approximations do not necessarily have a practical importance [1]. In optimization-
based algorithms, the operation describing the projection operation is first discretized, and the
inversion is performed for the discretized problem using tools from optimization theory. In
the literature, such numerical algorithms are known by different names, which emphasize
different aspects: algebraic reconstruction technique (ART) [21], model-based algorithms
[22-25], and iterative algorithms [26].

The main advantages of analytical algorithms are the relative simplicity in which they
may be programmed and the possibility for computationally efficient implementations.
Analytical algorithms, and in particular BP algorithms, are especially attractive in the fields
of X-ray CT and OAT, where they achieve high-quality reconstructions in various detection
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geometries. Optimization-based techniques offer several advantages over analytical ones,
which include exact compensation for additional effects in the projection formulae [27-30],
compatibility with arbitrary detection geometries [10], higher tolerance to discretization
errors and additive white noise [26,31], and the ability to use nonlinear tools from
compressed-sensing theory such as sparsity in alternative representations [32] and least total
variation [26,33]. The two major disadvantages of optimization-based techniques are the
complexity of their implementation and their computational burden, especially when non-
linear regularizers are used [26,32,33]. In the case of 3D imaging, images with relatively
modest resolutions may take several minutes to reconstruct when efficiently implemented on
graphical processing units (GPUs) [34]. In the case of volumetric images with high voxel
counts, analytical formulae, even when not exact, remain the most practical option for real-
time operation [35,36].

In this paper we develop a novel scheme for algebraic calculation of BP operators for
OAT, which we term algebraic back-projection (ABP). While in standard algebraic
inversion, one may invert the projection operator without making any assumptions on the
nature of its inverse, in ABP it is assumed that the inverse operation consists of a single BP
operator that is applied on all the projections. As we show in this work, this BP operation may
be found by an iterative least-square minimization procedure. Thus, similarly to conventional
BP formulae, ABPs are most appropriate when the scanning geometry contains symmetries,
namely when the scanning surface is either translation or rotation invariant.

To efficiently implement ABP it is required that the discretization of the image and
detection surface share the same symmetry, i.e. share the same invariances. Accordingly, in
our work, we chose 2D OAT with linear scanning as our geometry for the implementation of
ABP, which is translation invariant and thus compatible with image discretization on a
Cartesian grid. We demonstrated ABP in numerical simulations, and obtained that it produced
inverse operations in which each point in the projection data is back-projected over an arc in
the image — the hallmark of optoacoustic BP formulae. In our numerical simulations, the
reconstructions of ABP achieved comparable quality to those obtained by the conventional
model-based approach, but with the runtime of a BP formula.

In contrast to BP formulae, there is no limitation in ABPs on the mathematical operation
that describes the projections. Thus, one may include additional physical effects in the
forward model, e.g. the effect of finite detector size in OAT [23], which may not always be
accurately included in BP inversion formulae. For example, it has been previously shown that
when focused detectors are used [27,28], e.g. in optoacoustic microscopy, approximate BP-
based inversion formulae involve significant reconstruction errors. For such geometries, BP
operators found via ABP may offer the benefit of accurate reconstruction without the high
computational burden of conventional algebraic reconstruction methods.

The paper is organized as follows: In Section II, a short theoretical introduction to the
tomographic problem in optoacoustic imaging is given. In Section III, the theory of ABP for
the case of 2D OAT with linear scanning is developed. In Section IV, the performance of
ABP is demonstrated in numerical simulations, and in Section V the results are discussed.

2. Image reconstruction in OAT

In OAT, the image, denoted by H(r), represents the energy-deposition map in the tissue and
is indicative of the optical absorption coefficient within the imaged specimen. The projection
data relate to a set of 1D acoustic signals obtained at different positions of the ultrasound
detector. The relation between the acoustic pressure p(r,t) at a given position r and time
instant 7 to the optoacoustic image H(r)is often described by the following integral relation
[10]:
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where, I" is the Griineisen coefficient, cis the speed of sound in the medium, and ¢is time.
The projection formula in Eq. (1) represents 3D integration (or projection) over a sphere with
a radius of ¢t whose origin is at r. In 2D problems in which it is assumed H(r)is

approximately confined to a plane, the integral in Eq. (1) is calculated over a circle.
The set of acoustic signals p(r,?) obtained over several locations represents the projection

data used for reconstructing the image H(r). When H(r) has a finite support, and p(r,?) is
known over a closed surface that surrounds H(r), Eq. (1) may be uniquely inverted [10].
When the detection surface is either a sphere, a cylinder, or a plane, exact inversion may be
achieved by the following BP formula [12]:

dQ, (r"

Ho==2 | [p(rtt)—t%p(rzt)] .

[r—r'|=ct

2

where dQ (r')is the solid angle element corresponding to the detector surface element dS'
when viewed from r, and is given by the following equation [11]:

dQ, (r') = L[n(r ) i} 3)

[r'—r[ [r'—r|

where n(r') denotes the outward-pointing normal of the integration surface at r'. In Eq. (2),
Q, is the solid angle covered by the detection surface and is equal to 4n for spherical and
cylindrical surfaces, and to 2z for planar surfaces. When the detection surface is in the far
field of the imaged object, Eq. (2) represents an approximate solution to the inverse problem
for any closed-surface [11]. In that case, the first term in Eq. (2) may be omitted since
p(r',r) < t9/dt p(r',1).

While Eq. (2), or variations thereof, is the most commonly used BP formula in
optoacoustic tomography, it is important to note that numerous alternative formulae exist. For
the case of infinite line detectors, Burgholzer et al. developed an exact 2D formula that was
successfully tested on experimental data [13]. 2D formulae have also been developed for the
case in which the optoacoustic image is restricted to a 2D surface [14,15]. However, these
algorithms have not been tested on experimental data.

In algebraic inversion algorithms, both the optoacoustic image and projection data are
discretized and represented by vectors, which we denote by h and p respectively. The
discretization of Eq. (1) leads to the following matrix relation [11]:

p =Mh, “
where M is the model matrix that represents the integral in Eq. (1). The calculation of M
may be performed via the interpolation of H(r) at positions that are not on the discretization
grid or by assuming that H(r)is composed of atoms for which an analytical solution to Eq.
(1) is known.

In principle, the inversion of Eq. (4) may be performed for any detection surface by
solving the following least squares minimization problem [25]:

hrec =argmin”p_Mh||2’ (5)

where ||-||,, is the ¢, norm. For a given signal p, the solution of Eq. (5) may be found by
using the pseudo-inverse of M [37-39], or by using iterative methods such as LSQR [40],
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[41]. The advantage of the pseudo-inverse approach is that it provides a closed-form solution
to Eq. (5), given by

h.=M'p (6)

where M is the pseudo-inverse matrix, which is given by M’ = (MTM) "M’ Once M'
has been pre-calculated, the reconstruction may be efficiently performed by calculating the
matrix-vector product in Eq. (6). However, the computational burden of the pre-calculation of
M' has limited its use. In practice, Eq. (5) is solved by iterative methods that do not require
pre-calculations and involve acceptable reconstruction times [41-43], albeit considerably
slower than those achieved by BP methods. Both the pseudo-inverse and iterative solutions to
Eq. (5) may be extended to include Tikhonov regularization that is required when the
projection data is insufficient for an accurate reconstruction of the image on the pre-
prescribed grid, leading to an ill-conditioned matrix M . In the case of LSQR, regularization
may also be performed by stopping the algorithm after a few iterations, before convergence is
reached [40,42], and it is the method of regularization chosen in this work. A discussion on

the numerical complexity of the different inversion methods is given in Sec. 3.2 and in the
Conclusion.

3. Algebraic calculation of back-projection operators
3.1 Theory

In this section we develop the theory for ABP reconstruction in OAT for a rectangular grid
with a linear scan of the acoustic detector. The parameters of the tomographic problem are
depicted in Fig. 1(a). Briefly, our optoacoustic image is discretized over a linear 2D grid with
N, and N pixels in the x and y directions, respectively, where the respective pixel sizes are

A, and A, . We assume that the projections are obtained over a linear scan in the x direction
with a step size of A, and N, scanning positions, where N, > N_ . In case the projection
data is measured with a step size different than A _, it may be interpolated to a new grid with
a step size of A_. For each scanning position, the acoustic signal is discretized with N, time
points, where N, > N, . We further assume that the projections are acquired symmetrically

with respect to the center of the image. For each position of the detector, the acoustic signal is
discretized by the vector p,, where the entire projection data are given by the following

equation:

P
P,

p=| | ()
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(a)

Grid for calculating the model matrix
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Fig. 1. (a) The grid of the image and detector locations used for calculating the model matrix
M . The image is divided into N, x N, square pixels with a pixel area of A A, and the

acoustic signals are sampled at N, positions over a line with a distance of A, between them.

(b) The image grid on which the projection operator K is calculated. Here, only a single
back-projection is calculated, and the number of pixels in the x directions is increased to

Ne=N,+N,-1.

Similarly to analytical BP formulae, in ABP the same back-projection operation is applied
on each data vector p,. However, in contrast to analytical formulae, the back-projection
operation in ABP is represented by a kernel matrix K that back-projects each p,over an
image with N pixels on the y axis and N, = N + N, —1 pixels on the x axis, as illustrated in
Fig. 1(b). As shown in Fig. 2, the requirement N, = N _+ N, —1ensures that all the back-

projected images overlap with the grid of the image we wish to reconstruct.
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Application of the back-projection operator
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Fig. 2. An illustration of how the back-projection operator is applied on data from different
detectors. The back-projected images are shown by the arcs and their span in the x direction is

N, pixels. The back-projection operation is the same for all the detector locations, but the

position of the projected image is shifted so it is always centered on the position of the
detector. All the back-projected images overlap with the region of interest in which the image
is to be reconstructed (shown in the gray square), where the final reconstruction is a sum of all
the back-projected images.

The kernel matrix K may be represented as follows:

K,

where K, (n=1...N,) is the back-projection operation that creates the nth column in the
back-projected image. Accordingly, K p,represent the nth column of the image back-

projected from the ith projection. As illustrated in Fig. 2, the reconstructed image is a sum of
the translated back-projected images. Accordingly, the reconstructed image h,  may be

described by the following matrix relation:
h,. =Kp )

where the modified kernel matrix K is given by
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K, Ky K, K,
e KNPH K.Np K, K, ’ (10)
KN,)+N;1 KN,,+NX—2 o KNX+1 KNX
Multiplying Eq. (9) by M and substituting Eq. (4), we obtain
P... =MKp. (11)

An exact reconstruction would fulfillp,,, =p for any vector p. Using Eq. (11), a kernel
matrix that achieves an exact reconstruction should fulfill

A

MK =1 (12)

- N,N, >

where 1 NN, is an identity matrix of size N,N,xN N,. To invert Eq. (12), the matrix K

needs to be represented in vector form without reoccurring entries. The details of the
transformation of Eq. (12) into a standard algebraic equation composed of a matrix-vector
product are given in the Appendix.

3.2 Algorithmic implementation

The implementation of ABP, based on the derivations in the Appendix, may be summarized
by the following steps:

1) Build the model matrix M for the geometry shown in Fig. 1(a).
2) Construct the matrix M, = |:0N, NN, (N _NY),M] .

3)Set M =M

temp *

4) Execute N, —1 time the following operations:

4.1) Shift circularly N places to the left all the rows in M, and save the

temp

result in M

temp *

42)Set M M,
.2) Se =M .

temp

temp

5) Build the matrix I, = [ONZX,\,_(N vy L, }

6) Set I, =1

temp *

7) Execute N, —1 time the following operations:

7.1) Shift circularly N places to the left all the rows in I, =~ and save the

temp

resultin I

temp *

I
7.2) Set I‘,=( j
Itemp
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8) Setn=1.
9) Repeat N, times:

9.1) Set I, as the nth vector in matrix I, .

9.2) Find the vector K, that minimizes ||MSKM -1

c,n

-
93)Setn=n+1.

10) Construct the kernel matrix K by concatenating all the column vectors found in step
9, as shown in Eq. (A7a).

11) Build the matrix p,, according to Eq. (A10) and calculate h_, =Kp_, .

12) Construct the solution by using Eq. (A11).

Steps 1-10 in the algorithm are considered as pre-calculation and need to be performed
only once for a given imaging geometry. In the pre-calculation, steps 1-7 involve merely
rearrangement of matrix elements and their execution time is inconsequential when
performed with sufficient random access memory (RAM) to store M . The computational

burden of ABP is mostly in step 9, which involves solving an optimization problem for the
matrix M. The reason for this high computational burden is that the matrix M has N,

times more entries than the model matrix M . When solving Eq. (A9) in iterations, each

iteration of LSQR involves a complexity proportional to calculating M K_, N, times, i.e.

O(N;NfNyNK). In contrast, step 11, which is individually performed for each dataset,
involves a single matrix-matrix multiplication with a complexity of O(N,NyN KNP), ie.
N,N, times less than a single iteration of step 9. Finally, step 12 involves summing N,
back-projected images and thus has a complexity of O(N,,N'VNX) . Since in most practical
application, N _, N N, and N, are of comparable magnitude, which we denote by N, the
complexity of reconstructing an image with ABP is O(N ¢ )

While the pre-calculation in ABP is high, it is still lower than that of the pseudo-inverse
approach (Eq. (6)). The matrix multiplication and inversion steps in Eq. (6) lead to a

complexity of 0[(N],Nt)2 NXN},+NPNI(NXN},)2+(NXN},)3] In addition, in the case

studied in this work, regularization is required since the projections are obtained with a
limited view. As a result, the calculation of the pseudo-inverse matrix requires a Tikhonov
regularization term to Eq. (5) [38], and to perform the inversion for several values of the
parameter, thus leading to a total computational burden of

0[(NPN,)2NXN_VNZ+NPN,(NxNy)2 Nﬂ+(NxNy)3NJ, where N,is the number of
regularization parameters that are tested.
4. Numerical results

Our numerical simulations were performed for the 2D geometry illustrated in Fig. 1 with the
parameters N, =N =81 and A =A =0.025 cm, which correspond to an image size 2 x 2

cm — a typical image size for optoacoustic tomography [43]. The detector was scanned over a
line at a distance of 1.5 cm from the center of the image grid and acquired N, =325
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projections. We note that taking N, to be considerably larger than N, is essential for

achieving a good tomographic coverage of the object and reducing limited-view artifacts [42].
The speed of sound used in the simulations was ¢ = 1500 m/s. The time vector over which the
projections were calculated had N, =647 point with a time step of A/(3c) . To avoid using

the same model for the forward and inverse problems, the model matrix used for
reconstruction assumed acoustic signals with a time step of A/(2c¢), corresponding to

N, =431 and a matrix size of 140075 x 6561, which occupied 156 MB when saved as a

double sparse matrix in Matlab. Before reconstruction, the projections were interpolated from
aA/(3c)toa A/(2c) time step. The simulations were performed without parallelization on a

Lenovo ThinkStation P900 workstation with an Intel Xeon E5-2650 CPU operating at 2.3
GHz, 256 GB of RAM, and one terabyte of hard drive space.
To apply ABP, the matrices M_ and I, in Eq. (17) were first calculated. The matrices

had a size of 45524375 x 32805 and 45524375 x 431, and occupied 51 GB and 2.2 GB of
RAM, respectively. Once the matrices had been calculated, the LSQR algorithm was used to
solve the optimization problem in Eq. (A9). The first iteration of LSQR took approximately
17 minutes for each time instant, and approximately 5 days for the entire matrix K.
Subsequent iterations took only 45 seconds per iteration for a given time instant, or
approximately 5 hours for the entire matrix K. While in previous studies on conventional
algebraic inversion in OAT, it was found that 50 iterations were sufficient for the LSQR
algorithm to converge [21,35], in the current study 120 iterations were performed to enable us
to properly present the convergence rate of the algorithm.

Figures 3(a)-3(c) show the back-projection operators obtained from K for different times
for the 120th iteration. As the figures shows, all the back-projections were on arcs and had a
bipolar nature — the hallmarks of an optoacoustic back-projection operation (Eq. (2)). In Fig.
3(d), we show a 1D slice of the back-projection image of Fig. 3(b) taken over the y axis at x =
0 (solid curve). For comparison, Fig. 3(d) also shows the result obtained for the 1D slice
when only a single iteration was used in the LSQR solution of Eq. (A9), in which K was
calculated (dashed curve). As the figure clearly shows, the slice from the 1% iteration is non-
zero only at two discrete time instants, at which the back-projected signal has opposite signs.
This type of back-projected signal corresponds to a derivate operation, which is also the
dominant operation in the 3D back-projection formula (Eq. (2)). As Fig. 3(d) shows, when
more iterations were performed, a more elaborate back-projection structure emerged. We note
that for all the time instants for which K was calculated, the slices of the back-projected arcs
had approximately the same temporal profile shown in Fig. 3(d).

Figures 4(a)-4(c) show the three test images used to evaluate the performance of the ABP
algorithm. The first image (Fig. 4(a)), composed of identical point-like circles, was chosen to
test the reconstruction isotropy, whereas the second image (Fig. 4(b)), which contained circles
of various sizes, was chosen to check how different scales in the image affected the
reconstructions. In the third image (Fig. 4(c)), the reconstruction was tested for lines, which
imitate the structure of blood vessels. Three methods were used to reconstruct the images: the
BP formula of Eq. (2), algebraic inversion via the application of LSQR on Eq. (5), and the
proposed ABP.

The BP reconstructions are shown in Figs. 4(d)-4(f). Since Eq. (2) does not include the
correct scaling factor for 2D images, its reconstructions were normalized. In Fig. 4(d), a good
reconstruction is obtained, in which the major error is due to limited-view artifacts and
smearing in the lateral direction. As expected, the artifacts become more significant the
farther the objects are from the detector. In Fig. 4(e), an additional high-pass effect is
observed. Indeed, it has been previously documented that when the BP formula in Eq. (2),
which is exact for 3D, is applied on a 2D problem, the resulting reconstruction is high-passed
compared to the originating image [25, 28]. The reconstructions in Fig. 4(d)-4(f) suffered
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from negative values and excess of background noise, similarly to previous studies [22]. The

reconstruction time for each image was approximately 0.17 seconds, which is similar to the
run times reported in Ref [44]. for a similar image size.

1 (d)1

—120"iteration

- -1*iteration

S
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Fig. 3. (a-c) Images from the back-projection operator K for different time instants. The results
were obtained with 120 iterations of the LSQR algorithm applied on Eq. (A9). (d) A 1D slice
(solid curve) taken from the back-projection operator K shown in Fig. 3(b) (=11 ps) at x =

0. The slice, obtained with 120 iterations, is compared to the one obtained with a single
iteration (dashed curve).

Input BP Algebraic ABP

14t iteration 120 itcration 1% iteration 120™ itcration 1

(g).

0.5

0
X (cm)

Fig. 4. (a-c) The input images from which the projection data originated and the corresponding
reconstructions obtained via (d-f) the back-projection (BP) formula in Eq. (2); (g-1) the
algebraic approach in which Eq. (5) was solved by using the LSQR algorithm with (g-i) a
single iteration and (j-1) 120 iterations; and (m-r) the proposed algebraic back-projection
(ABP) algorithm in which Eq. (A9) was solved by using the LSQR algorithm with (m-0) a
single iteration and (p-r) 120 iterations.

Figures 4(g)-4(i) show the algebraic reconstructions via Eq. (5) when the LSQR algorithm
was performed with a single iteration, whereas Figs. 4(j)-4(1) show the results of the 120™
iteration. The reconstruction took approximately 0.65 seconds for a single iteration and
approximately 43.5 seconds for 120 iterations. When only a single iteration of the LSQR was
performed, the reconstructions exhibited the same smearing effect and accentuation of small
objects as those observed in the BP reconstructions (Figs. 4(d)-4(f)). In addition, the images
also exhibited a depth-dependent attenuation. However, when 120 iterations were performed,

the reconstructions were almost identical to the originating images, with only minor limited-
view artifacts.
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Figures 4(m)-4(o0) show the reconstructed images obtained by ABP with a single iteration,
and Figs. 4(p)-4(r) show the result of the 120th iterations. Once the matrix K had been pre-
calculated, the ABP reconstructions required only 0.17 seconds, regardless of how many
iterations were used to pre-calculate K. In particular steps 11 and 12 in the ABP algorithm
(Section IIIB) required 0.12 and 0.05 seconds, respectively.

The first iteration of the ABP reconstructions suffered from the same distortions observed
in the first iteration of the algebraic reconstructions (Figs. 4(g)-4(i)). Similarly to the case of
the algebraic reconstructions, in the 120th iteration of the ABP Similarly to the case of the
algebraic reconstructions, in the 120th iteration of the ABP reconstructions the distortions
were significantly reduced, and only weak limited-view artifacts remained (Fig. 4(p)-4(r)),
albeit more visible than those obtained in the algebraic reconstructions.

BP Algebraic Algebraic ABP

120 iterations optimal 120 iterations

0.5

Fig. 5. The reconstruction of the images of Fig. 4(a)-4(c) from noisy data. The reconstructions
were performed using (a-c) the back-projection formula (BP) in Eq. (2), (d-f) algebraic
solution to Eq. (5) with 120 iterations and (g-i) the number of iterations that minimized the
RMSE, and (j-1) algebraic back-projection (ABP) with 120 iterations in the solution of Eq.
(A9).

In the last numerical example, we compared the performance of the reconstruction
algorithms in the presence of noise for the images in Fig. 4(a)-4(c). To simulate a noisy
measurement, we added to each point in the projection data a random variable with a
Gaussian distribution, zero mean, and standard-deviation of 20% of the maximum value in
the projection data, where all the random variables were uncorrelated.

We used two measures to assess the quality of the reconstructions. The first measure was
the root-mean-square error (RMSE) of the images when compared to their respective
originating images in Fig. 4(a)-4(c). For the algebraic inversion, the reconstructions with the
lowest RMSE were respectively obtained at the 2™, 8", and 3™ iterations for the images of
Figs. 4(a)-4(c). Figure 5 shows the reconstructions obtained using the BP formula of Eq. (2)
(Figs. 5(a)-5(c)), the algebraic reconstruction of Eq. (5) performed with 120 iterations (Figs.
5(d)-5(f)) and with the number of iterations that produced the lowest RMSE (Figs. 5(g)-5(1)),
and ABP with 120 iterations (Figs. 5(j)-5(1)). A 1D profile of the reconstructions of Figs. 5(a),
5(d), 5(g) and 5(j) over the horizontal line y = 0 is shown in Fig. 6.
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Fig. 6. The 1D profiles of the reconstructions shown in 5(a), 5(d), 5(g) and 5(j) over the
horizontal line y = 0.

The RMSE values for the noiseless and noisy cases are shown in Figs. 7(a)-7(c) as a
function of iteration for standard algebraic inversion (Eq. (5)) and ABP. The figure shows that
while the algebraic reconstructions achieved a lower RMSE in the noiseless case, they
obtained a higher RMSE than ABP in the noisy case. As Figs. 7(a)-7(c) show, the RMSE of
ABP in all three examples converges to a value that is larger than zero. The result is expected
because of the restriction put on ABP that all the signals are back-projected with the same
kernel. In contrast, in conventional algebraic inversion, the noiseless case would yield an
RMSE that practically decays to zero, up to rounding errors, assuming the same model matrix
is used in the forward and inverse problems. Since our case involved a limited-view
reconstruction, the RMSE decay of the algebraic inversion was slow, as expected in an ill-
conditioned problem [40,42]. Interestingly, for both ABP and the algebraic reconstruction, the
slowest decay was obtained for the image in Fig. 4(b). This result may be explained by the
different scales exhibited in the image of Fig. 4(b) in contrast to the images of Figs. 4(a) and
4(c) that exhibit structures of the same scale. In the noisy case, the lowest RMSE of the
algebraic reconstruction was obtained by terminating the LSQR before the 120" iteration. We
note that in [42], terminating the LSQR algorithm before convergence was used as a way to
regularize the algebraic inversion. For ABP, the susceptibility of the later iterations to noise
was found to be less significant than in the algebraic reconstructions.
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Fig. 7. (a-c) The root-mean-square error (RMSE) of the algebraic and ABP reconstructions as a
function of iteration for the images in Figs. 4(a)-4(c), respectively. While the algebraic
reconstructions exhibit a lower RMSE, their RMSE is more susceptible to noise. The RMSE
was calculated from the difference between the reconstructions and originating images. (d-f)
The signal-to-noise ratio (SNR) of the algebraic and ABP reconstructions as a function of
iteration for the images in Figs. 4(a)-4(c), respectively. The results are compared to the ones
achieved by the back-projection (BP) formula. The SNR was calculated for each image
dividing its maximum value with the standard deviation in a 10 x 10 pixel area on its top left.
For all images, ABP obtained the highest SNR, while the BP formula obtained the lowest.

The second measure of quality was the signal-to-noise ratio (SNR) in the noisy
reconstructions, calculated by dividing the maximum value of each image by the standard
deviation in a 10 X 10 pixel area on the top left of the image, a region in which the originating
images are identically equal to zero. Figures 7(d)-7(f) respectively show the SNR of the
reconstructions achieved by BP, algebraic inversion, and ABP for the test images of Figs.
4(a)-4(c). For all the test images, ABP achieved the highest SNR, while the BP formula
achieved the lowest. This quantitative result can also be observed qualitatively when
comparing the images in Fig. 5. We note that in Fig. 7(e), the SNR of ABP improved
significantly in the first few iterations, in contrast to the other examples, because of the low
signal level obtained in the first iteration (Fig. 5(n)). Thus, while the noise in all the
reconstructions increased in the first iterations, only in Fig. 7(e) the increase in the signal was
sufficient to improve the SNR.

5. Experimental results

To further test the performance of ABP it was tested on experimental optoacoustic data. The
optoacoustic excitation was performed with an OPO pulse laser with a repetition rate of 100
Hz and pulse energy of approximately 30 mJ, tuned to A = 680 nm (SpitLight DPSS 100
OPO, InnolLas Laser GmbH, Krailling, Germany). The imaged object was a dark
polyethylene microsphere with a diameter of 0.3 mm (Cospheric LLC, Santa Barbara,
California), which was embedded in transparent agar. The detection was performed with a
needle hydrophone with a diameter of 1 mm and an acoustic bandwidth of 12 MHz (Precision
Acoustics, Dorchester, UK), which was scanned at a distance of approximately 6 mm from
the microsphere over a span of 2 cm with a step size of 0.25 mm. The voltage signal was
digitized by an oscilloscope with a bandwidth of 70 MHz (Rigol Technologies, Beaverton,
OR, USA) and averaged 16 times per position.
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Fig. 8. (a-c) Reconstruction of a microsphere with a diameter of 0.3 mm from experimental
data using (a) BP (b) algebraic inversion with 5 iterations and (c) ABP operator calculated with
120 iterations. For the algebraic inversion, no further improvement in the peak value or width
of the microsphere reconstruction was obtained with more iterations. (d) a 1D plot of the
reconstruction through the horizontal line y = 3.72 mm, showing the 1D profile of the
microsphere reconstructions.

Similar to the previous section, the image was reconstructed over a grid of 1 x 1 cm, at a
distance of 0.5 cm from the detector. Figures 8(a)-8(c) show the reconstruction results
obtained using BP, algebraic inversion, and ABP, respectively. Since the image included only
a single microsphere, only a 5 x 5 mm square of the image is presented. The algebraic
reconstruction was performed with 5 iteration, where further iterations did not change the
magnitude of the microsphere in the image. Figure 8(d) shows a 1D plot of the microsphere
reconstruction, obtained on the horizontal line of y = -3.72 mm in Figs. 8(a)-8(c). While all
three methods obtained a similar reconstruction of the microsphere, the reconstruction of BP
suffered from a significantly higher noise level than the algebraic reconstruction and ABP.

6. Conclusion

In conclusion, we developed a method for the algebraic determination of back-projection
operators. The method, which we term algebraic back-projection (ABP), finds the optimal
back-projection operator in the least-square sense under the restriction that the same operator
is applied on each of the projections. Once the back-projection operator, represented by the
kernel matrix K, is found, the reconstruction is achieved by a matrix-multiplication
operation followed by a summation operation (Eq. (23)). Since K is pre-calculated for a
given geometry and does not depend on the projection data, ABP may be implemented with a
numerical efficiency comparable to the one achieved by analytical BP formulae.

While the purpose of this paper is to introduce the general framework of ABP, which
represents a new type of solution to tomographic problems, the specific implementation was
for the problem of 2D OAT with a linear scanning of the acoustic detector. This specific
geometry simplified the implementation of ABP in two ways. First, in this geometry both the
projections and the image were discretized in Cartesian coordinates, simplifying the matrix
operations required to describe the translation of the acoustic detector or of the image.
Second, the use of a 2D example enabled the implementation of ABP without parallel
programming. In our numerical simulations, the kernel matrix was calculated iteratively using
the LSQR algorithm. When LSQR was applied with a single iteration, the result was a back-
projection of the derivative of the acoustic signals onto arcs, which is the well-known far-
field approximation to the 3D BP formula (Eq. (2)) [11]. Indeed, when we used the single-
iteration ABP in our 2D geometry, we obtained high-passed reconstructions similar to those
obtained when the analytical BP formula (Eq. (2)) was applied. When higher iterations were
used to calculate K, finer details were added to the back-projection operation, though it still
maintained its general structure of arcs with derivative operations.

In terms of run time, in our numerical simulations ABP was comparable to BP and
considerably faster than iterative algebraic inversion. In iterative algebraic inversion, each
iteration of the LSQR algorithm requires multiplying the model matrix M by a vector [40],
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leading to a complexity of O(N ¢ ) per iteration. In contrast, in ABP the total complexity per

reconstructed image was O(N 4 ) . While the complexity of the BP algorithms is only O (N 3)

[40], they involve more complex calculations per pixel than ABP in which the complexity
relates to an efficiently implementable matrix-matrix multiplication, and as a result the run
times were comparable in our numerical example. We note that future implementations of

ABP may achieve a complexity of O (N } )by utilizing the sparsity of K, visible in Fig. 3, and
performing the multiplications only for the significant elements of K .
The pre-calculation of ABP involves a complexity of O(N > )per iteration, whereas the

pseudo-inverse approach has a complexity of O(N 6) . While efficient methods to calculate

the pseudo-inverse have been developed using frequency-domain [45] and combined-space
[46] representations, these methods did not reveal the underlying back-projection kernel in
time domain shown in Fig. 3. In addition, in contrast to the current work, the methods in Refs
[45,46] have not been tested in limited-view scenarios in which the angular coverage was
smaller than 180°.

In terms of reconstruction accuracy, the results obtained by ABP in our simulations were
visually comparable to those obtained by standard algebraic inversion. While in the noiseless
case the standard algebraic inversion obtained a lower reconstruction error for both images
tested, it was more sensitive to noise than ABP. Thus, we conclude that the restriction in ABP
to a single back-projection operator acts as a regularizer which suppresses noise at the price
of moderate loss of image fidelity. In comparison to ABP and standard algebraic inversion,
the analytical BP formula obtained the lowest image fidelity and was the most susceptible
method to noise. We note that since the geometry studied involved a limited-tomographic
view, the reconstruction errors were manifested also by negative image artifacts around the
imaged objects and loss of tangential resolution [10].

Since ABP can achieve run times comparable to conventional BP formulae, while
potentially offering better noise suppression, it may prove useful even in cases in which exact
BP formulae exist. In addition, the generic framework of ABP may enable future
implementations of this approach whose benefits go well beyond noise suppression. In
principle, ABP may be applied to any linear tomographic problem, regardless of what
operation is used to calculate the projection data. The performance of ABP will be determined
by whether the discretization of the image and projection data have the same invariants.
When they do, symmetry will require that the optimal back-projection operation be the same
for all projections, making ABP equivalent to standard algebraic inversion. An example of
such a scenario is cross-sectional imaging with ring detectors in OAT [7] with a polar image
grid [45]. In 3D OAT, spherical or cylindrical grids may be used to develop ABP for
spherical or cylindrical scans, respectively. A cylindrical grid may also be used for
developing ABP for the recently introduced spiral scan [36]. When the projection data do not
possess the symmetry of the image grid, ABP will find the best compromise, in the least-
squares sense, for the back-projection operator.

One possible direction in which ABP may be generalized is the inclusion of complex
projection operations, such as those found in practical OAT systems. For example, when the
dimensions of the acoustic detector are larger than the acoustic wavelength, a spatial-
averaging operation is added to Eq. (1) [10]. This operation leads to projection formulae that
exhibit a complex dependency on the detector geometry for which no exact BP formulae are
known; a high-fidelity reconstruction in such cases necessitates the use of algebraic methods
[27,28]. Two more effects that may be included in the OAT model are non-uniform
illumination [29] and signal attenuation [27]. Since all the above-mentioned effects are
identical for all the projections, their inclusion is not expected to affect the performance of
ABP with respect to the performance of standard algebraic inversion.



Research Article Vol. 9, No. 11| 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5188 I

Biomedical Optics EXPRESS .

One of the major challenges of extending ABP to other imaging scenarios is
computational. In our work, for a 2D image with a modest pixel count of 81 x 81, the
corresponding matrix M, occupied 51 GB of RAM, requiring a workstation to implement the

pre-calculations of the algorithm. In addition, 120 iterations performed to calculate K
required approximately six weeks when executed on a single processor. Clearly, directly
extending the algorithm to higher resolutions or 3D may lead to an impractical computational
burden. However, this computational burden may be decreased by minimizing the
redundancy in the over-determined inversion problem of Eq. (A9). For example, in the
simulations discussed in this work, the number of equations in Eq. (A8) was over 3 orders of
magnitude larger than the number of unknowns. Thus, it may be possible to drastically reduce
the number of linear equations without sacrificing the accuracy of the reconstruction,
facilitating the extension of ABP to images with higher pixel/voxel count.

A different approach for accelerating the pre-calculation in ABP is to use parallel

computing. Since the complexity of the pre-calculation stems from performing the Nt

independent calculations in Step 9 in Section I1IB, an improvement on the scale of N, may

be achieved by using a similar number of processors. Since the pre-calculation is performed
only once for a given geometry, a computer cluster may be used to perform the pre-
calculation offline. Alternatively, parallelization may be achieved by using graphical
processing units (GPUs). Although the matrix M, is too large to be saved in the RAM of

conventional GPUs, a more efficient representation of its entries may enable one to
implement ABP on a GPU. In particular, the matrix M, is not composed of unique entries,

but rather contains N » copies of M , which in our example occupied only 156 MB. Thus, the

algorithm may be implemented on a GPU with the matrix M stored in the RAM of the GPU,
with elements of the matrix M, calculated on-the-fly in the iterative solution of Eq. (A9).

Moreover, the matrix M itself may be generated from an even smaller set of data, as
previously demonstrated in [34,47]. Thus, ABP may be adapted for GPU implementation,
which may enable its generalization to 3D.

Finally, we note that the information found in the low-resolution BP operator may be
extended to enable image reconstruction at arbitrary scales if an analytical operation is
empirically fitted to the numerical BP operator. For example, the result of the first iteration of
ABP found in our paper may be approximated by projecting on the arcs the temporal
derivatives of the acoustic signals and applying an angle dependent weighting function on the
arc. For higher iterations, the signal that is back-projected would need to be a convolution of
the acoustic signal with the 1D BP response found in Fig. 3(d). This approach may enable
finding empirical filtered back-projection formulae, analogues to those based on the Ram-Lak
filter in computerized tomography [48].

Appendix
In this Appendix, a detailed derivation of the algorithm in Sec. 3.2. is provided. As Eq. (10)
shows, the matrix K has a size of N,N, xN,N, and is composed of N, =N _+N, -1 sub-

matrices of size N, XN, that appear at several positions in the combined matrix. Thus,

although the matrix K contains N, N ,N,N, unknown elements, the number of its unique

entries is only N, N N, . In comparison, the number of linear equations in Eq. (12) is equal to

the number of elements in I , . i.e. (NPN, )2 .Since N, >N _>1 and N, >N, the number

of equations vastly exceeds the number of unknowns.
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To determine K via algebraic inversion, Eq. (12) first needs to be rearranged in a way in
which the matrix that contains the unknowns has only unique entries. As a first step, we break

K into N, matricesK,,...K, , ', each with the size of NN XN,

K K
N, N,-1 K, K,
K = KN,,+1 _ KN, K _ K3 K _ Kz
v, . s Ny o R : NN, T :
K K
KNﬂ+N¥—1 KNF+NX—2 N+l Ny

and the matrix I, , into N, matrices I,;...I, , = each with the size of N N, XN,

IN, 0 0 0

0 I, 0 0
Iv,l = >Iv,2 =| "'Iv,N = 7Iv,1vp = 5

0 0 1, 0

0 0 0 L

wheref(:[KV’I,KV’Z,...,KV’N oKy 1 and Dy =[0TG, 00 LTy 1. Replacing K

with a vertical arrangement of K, ;...K| , , Eq. (12) may be rewritten as follows:

M 0 - 0 0) K, I,
oM - 0 o K, I,
0 0 M 0 KV,NI,—I Iv,Nl,—l
0 0 0 M) K,, L,

We denote the block-diagonal matrices on the left-hand of Eq. (A3) by M, , and the vertical
rearrangement of K and I N, in Eq. (A3) by K, and I, respectively. The dimensions of
M,.K ,andI , are given by N,N;xN.N N, NN N, xN, and NN,XxN,, respectively.
The matrix K, in Eq. (A3) is connected to the matrix K in Eq. (8) by the following

transformation:

ONXNnyy(NK—NX) IN‘N‘.

ON,N)‘XN)‘ (Ng=Ny—1) INXN‘. ONXNY‘,XNY‘,

ONAN‘.XN‘.(NK —Ny-2) INXNy ONXNyszy

K, = K

ONXN‘ x2N, INAN}, ONXN),XN),(NK —Ny-2)
ONANnyJ‘ INva\. ONANyXNJ, (Ng=Ny=1)
INYN,. ON,N)‘XN)‘ (Ng=Ny)

(A

(A2)

(A3)

(A4)
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We denote the first matrix on the right hand side of Eq. (A4) by I_. As Eq. (A4) shows, the
size of the matrixI is N N (N, —N +D)XN N, or equivalently N N N, XN N .
Substituting Eq. (A4) into Eq. (A3), we obtain:

MK=1,, (A5)

where M, =M1, and has the following form:

ON,NI)XNV(NK—NX) M
ON,prNy(NK—NX -1) M ON,NPXN‘.
ONINI,XN)‘ (Ng—Ny-2) M ON,N,,sz,_
M, = ; ; : . (A6)
ON,przNy M ON,NPXN}.(NK —Ny-2)
ONIN,,XN‘ M ONINI,XN),(NK —Ny-1)

M 0

N,N,xN, (Nx=Ny)

Thus, the matrix M has the size of N;Nt XN, N, and is composed of N left-circular shifts

of the matrix |:0N,N XN, (N =N, ),M] .

Similarly to Eq. (12), Eq. (AS) is a matrix representation of (N N, )2 linear equations.

However, in contrast to the matrix K in Eq. (12), the matrix K has only unique entries. To
invert Eq. (A5) and obtain K, we first decompose the matrices K and I, in Eq. (A5) into a

set of N, column vectors:

K= (Kc,l K., K v K.y )’ (AT7a)

2V

I = (IC’1 | GPTE) SOV B ), (A7b)
Accordingly, Eq. (A5) may be rewritten as N, matrix-vector multiplications:

MK, =1, {n=1...N,}. (A8)

— *eon

For each value of n, Eq. (A8) represents a set of N[le equations with N, N, unknowns.

Accordingly, Eq. (A8) represents an overdetermined set of equations, which may not have an
exact solution, and one needs to find the vectors K, for which M K, best approximates

I, . To invert Eq. (A8), we therefore use the following ¢, minimization:

min|[M K, , L[, {n=1..N}, (A9)

2

which may be efficiently performed by the LSQR algorithm [40] due to the sparsity of M.
Once all the vectors K, , have been found via Eq. (A9), they are used to construct the

kernel matrix K via Eq. (A7a). To reconstruct the images, one may construct K via Eq. (10)

and then use Eq. (9). Alternatively, one may rearrange the projection data in the following
matrix form:
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P e =(p1p2"'p/vl,71 pr)> (A10)

and then construct the matrix h_, =Kp, . Each column in h_, represents a single back-
projected image with the size of Ny and N, in the x and y directions, respectively, as
by h

summation of the back-projected images may be obtained by the following equation, which is
equivalent to the operation shown in Fig. 2:

illustrated in Fig. 1(b). Denoting the nth column vector of h the translation and

mat mat,n

NF—I
h,=> h,, (N},Np —nN,:N,N,-nN,), (A11)

n=0

where the notation h,,, (i i ) represents to a column vector taken from the ith to the jth

elements of h
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